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Abstract
A one- parameter family of totally anisotropic Bianchi type-II string cosmological models with bulk
viscous fluid in Lyra geometry is investigated. Exact solutions of Einstein field equations have been
obtained by constraining the the constant deceleration parameter which yields power-law form of
the average scale factor. Some physical and geometrical properties of the models along with the
physical acceptability have been also discussed.
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1 Introduction
The present day universe is satisfactorily described by spatially homogeneous and isotropic Friedmann-
Robertson-Walker space-time. But at smaller scales, the universe is neither homogeneous and
isotropic nor do we expect the universe possess to these properties in it’s early stages of evolution.
Spatially homogeneous and anisotropic cosmological models have been widely studied in general
relativity in different context in the search of a realistic models of the universe in its early stages.
Bianchi I-IX spaces are useful tools for constructing spatially homogeneous and anisotropic cosmological
models. We shall be confined to Bianchi type II space-time models with richer structure both geometrically
and physically for describing the early stages of evolution of the universe. Asseo and Sol[1] emphasized
the importance of Bianchi type-II space-times which play a fundamental role in constructing cosmo-
logical models suitable for the description of the early stages of evolution of the universe.

The adequacy of isotropic perfect fluid cosmological models describing the present state of the
universe is no basis to expect that they are equally suitable for describing the early stages of evolution
of the universe. It is held that at the early stages of evolution of the universe when radiation in the
form of photons as well as neutrino decoupled, the matter behaved like a viscous fluid. Since viscosity
counteracts the gravitational collapse, a different picture of the initial stage of the universe may appear
due to dissipative processes caused by viscosity. Misner [2− 3] has studied the effect of viscosity on
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the evolution of the universe and suggested that the strong dissipation due to neutrino viscosity may
considerably reduce the anisotropy of the black body radiation. Murphy [4] has obtained an exact zero
curvature FRW cosmological model with bulk viscosity alone which exhibits an interesting feature that
the big-bang singularity appears in the infinite past. Belinski and Khalatnikov [5],while investigating
influence of viscosity, have found that near the initial singularity the gravitational field creates matter.
Padmanabhan and Chitre [6] have shown that the bulk viscosity leads to an inflationary-like solution.
It has also shown that the bulk viscosity acts like a negative energy field in an expanding universe [7].

String cosmology has been a subject of considerable interest since long. Cosmic strings are
topologically stable in the early universe [8]. That arise during the phase transition after big-bang
explosion as the temperature goes down below some critical temperature as predicted by grand
unified theory [9 − 12]. It is held that cosmic strings give rise to density perturbations which lead to
the formation of galaxies. The cosmic strings have stress-energy and couple to gravitational field.
Letelier [13− 14], Stachel [15] initiated the general relativistic treatment of strings and formulated the
energy-momentum tensor of classical massive string and presented some cosmological solutions for
massive strings in Bianchi type-I and Kantowski-Sachs space-times. Since then many researchers
have obtained strings cosmological models with different Bianchi symmetries.

Lyra [16] proposed a modification in Riemannian geometry by introducing a guage-function into
the structureless manifold as a result a displacement field arises naturally. Sen [17] has shown
that the static model with finite density in Lyra’s geometry is similar to the static Einstein model.
Halford [18] has developed a cosmological theory in Lyra’s geometry which give rise to nonstatic
perfect fluid universe models. The Lyra’s geometry is very close to the spirit of Einstein’s principle of
geometrization since both scalar and tensor field have more or less a geometrical significance. Rao
et al. [19] have presented Bianchi types II, VIII, and IX string cosmological models with bulk viscosity
in Lyra geometry. A lot of works has been carried out by many authors in different physical context
within the framework of Lyra’s geometry.

It is worth to mention some recent works which have some relevance to the present work.
Kumar [20] has studied a spatially homogeneous and anisotropic Bianchi type-II model representing
massive strings. Tyagi and Sharma [21] have obtained a locally rotationally symmetric Bianchi type-
II magnetized string cosmological model with bulk viscous fluid in general relativity. Chawala et
al. [22] have presented an anisotropic Bianchi type-I cosmological model in string cosmology with
variable deceleration parameter. Agrawal et al.[23] have investigated perfect fluid Bianchi type-II
string cosmological models in normal guage for Lyra’s manifold with constant deceleration parameter.

Motivated from the studies , in this paper, we obtain a one parameter family of spatially homogeneous
Bianchi type-II string cosmological models in the presence of a bulk viscous fluid within the framework
of Lyra’s geometry with time-dependent displacement vector. The paper is organized as follows: In
sec.2, we discuss the metric and the field equations. We obtain the solution of the field equations with
the assumption that the component σ1

1 of the shear tensor σj
i is proportional to the expansion scalar θ

and bulk viscosity coefficient is proportional to the power function of energy density in sec.3. In sec.4,
we discuss the physical and kinematical behavior of the cosmological model which are suitable for
describing the early stages of evolution of physical universe in agreement with recent Supernovae
observations.

2 The Metric and Field Equations

We consider totally anisotropic and spatially homogeneous Bianchi type-II space-time in the form

ds2 = −dt2 +A2(dx− zdy)2 +B2dy2 + C2dz2 (2.1)
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where the metric potentials are functions of time t alone.
The energy-momentum tensor for a cloud of massive strings with a bulk viscous fluid is given by

T j
i = (ρ+ p)viv

j + pgji − λxix
j (2.2)

where ρ is the proper energy density for a cloud of strings with particles attached to them. λ is the
string tension density, p is the effective pressure; vi is the four velocity vector of the particles; xi is a
unit vector representing the direction of string so that x1 ̸= 0, x2 = x3 = x4 = 0. The vectors vi and
xi satisfy the conditions

vivi = xixi = −1, vixi = 0. (2.3)

Choosing xi parallel to ∂
∂x

,we have
xi = (A−1, 0, 0, 0). (2.4)

The effective pressure p and isotropic pressure p are related by

p = p− ξθ (2.5)

where ξ is the bulk viscous coefficient and θ is the expansion scalar.
If the particle density of the configuration is denoted by ρp, then

ρ = ρp + λ. (2.6)

The field equations in gravitational units c = 1, 8πG = 1, in normal guage for Lyra’s manifold obtained
by Sen [17] are

Rj
i −

1

2
Rgji +

3

2
ϕiϕ

i − 3

4
gjiϕkϕ

k = −T j
i (2.7)

where ϕi is the displacement vector defined as

ϕi = (0, 0, 0, β(t)) (2.8)

and other symbols have their usual meanings as in Riemannian geometry.
In a comoving coordinate system, the Einstein modified equations (2.7) together with equation

(2.2) for the line-element (2.1) lead to the following system of equations:

B̈

B
+

C̈

C
+

ḂĊ

BC
− 3

4

A2

B2C2
+

3

4
β2 = −p+ λ (2.9)

C̈

C
+

Ä

A
+

ĊȦ

CA
− 1

4

A2

B2C2
+

3

4
β2 = −p (2.10)

Ä

A
+

B̈

B
+

ȦḂ

AB
− 1

4

A2

B2C2
+

3

4
β2 = −p (2.11)

ȦḂ

AB
+

ḂĊ

BC
+

ĊȦ

CA
− 1

4

A2

B2C2
+

3

4
β2 = −ρ (2.12)

Here an overdot indicates ordinary differentiation with respect to t. The energy conservation equation
T ij
;j leads to the following equation

ρ̇+ (ρ+ p)

(
Ȧ

A
+

Ḃ

B
+

Ċ

C

)
− λ

Ȧ

A
= 0 (2.13)

which is a consequence of the field equations (2.9)-(2.12). The conservation of R.H.S. of equation
(2.7) provides

(Rj
i −

1

2
gjiR);j −

3

2
(ϕiϕ

j);j −
3

4
(gjiϕkϕ

k);j = 0 (2.14)

which, after straightforward calculation, leads to

β̇ + β

(
Ȧ

A
+

Ḃ

B
+

Ċ

C

)
= 0 (2.15)
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Thus, equation (2.13) combined with equation (2.15) is the resulting equation when energy conservation
equation is satisfied in the given system. It deserves mention that the conservation equation in the
Lyra’s manifold is not satisfied as in general relativity. In fact, the conservation equation in Lyra’s
manifold is satisfied only on giving some special condition on the displacement vector β as shown
above.

For the metric (2.1) the dynamical parameters viz. spatial volume V , average scale factor a(t),
expansion scalar θ, shear scalar σ, Hubble parameter Hand the anisotropic parameter Am are given
by

V = ABC = a3, (2.16)

θ =
Ȧ

A
+

Ḃ

B
+

Ċ

C
, (2.17)

σ2 =
1

2

[
(
Ȧ

A
)2 + (

Ḃ

B
)2 + (

Ċ

C
)2
]
− 1

6
θ2, (2.18)

where
σj
i =

1

2
[ui;αp

α
j + uj;αp

α
i ]−

1

3
θpij .

Here the projection tensor pij has the form

pij = gij − uiuj ,

θ = 3H, (2.19)

Am =
1

3

3∑
i=1

(
Hi −H

H

)2

, (2.20)

An important observational quantity in cosmology is the deceleration parameter parameter q which is
defined as

q = −aä

ȧ2
. (2.21)

The sign of q indicates whether the model inflates or not. The positive sign of q corresponds to
”standard” decelerating model whereas the negative sign q indicates inflation.

3 Solutions of The Field Equations
Equations (2.9)-(2.12) and (2.15) are five equations in seven unknown A, B, C, ρ, p, λ and β. We
need two extra constraints to obtain explicit solutions of the system of equations. We first assume
that the component σ1

1 of the shear tensor σj
i is proportional to the expansion scalar θ, which leads

to the following relation between the metric potentials

A = (BC)m (3.1)

where m is a positive constant. The motive behind assuming this condition is explained with reference
to Thorne [24]. Tthe observations of the velocity red-shift relation for extragalactic source suggest that
Hubble expansion of the universe is isotropic today within≈ 30%.

Now, we assume that the deceleration parameter q has the constant value given by

q = −1 +
1

n
(3.2)

where n is a parameter. It is obvious that the deceleration parameter is negative for n < 0 and
n > 1 and is positive for 0 < n < 1. Substituting equation (3.2) in equation (2.21) and integrating the
resulting equation, we obtain the average scale factor a of the form

a = (k1t+ k2)
n (3.3)
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where k1 and k2 are arbitrary constants. Combining equations (2.16), (3.1) and (3.3), we find that

A = (k1t+ k2)
3nm
m+1 . (3.4)

From (3.1) and (3.4), we obtain

BC = (k1t+ k2)
3n

m+1 . (3.5)

Subtracting equation (2.10) from equation (2.11), we get

B̈

B
− Ċ

C
+

Ȧ

A

(
Ḃ

B
− Ċ

C

)
= 0 (3.6)

Equation (3.6), on integration, yields

B

C
= c1exp

{
c2

∫
dt

a3

}
(3.7)

where c1 and c2 are integration constants. Inserting the value of a from equation (3.3) in equation
(3.7) and integrating, we obtain

B

C
= c1exp

{
c2(k1t+ k2)

1−3n

k1(1− 3n)

}
, n ̸= 1

3
(3.8)

From equation (3.5) and equation (3.8), the metric potentials B and C are obtained in the form

B =
√
c1(k1t+ k2)

3n
2(m+1) exp

{
c2(k1t+ k2)

1−3n

2k1(1− 3n)

}
, (3.9)

C =
1√
c1

(k1t+ k2)
3n

2(m+1) exp

{
−c2(k1t+ k2)

1−3n

2k1(1− 3n)

}
. (3.10)

For these solutions, the geometry of universe is described by the line-element

ds2 = −dt2 + (k1t+ k2)
6mn
m+1 (dx− zdy)2 + c1(k1t+ k2)

3n
m+1 exp

{
c2(k1t+ k2)

1−3n

k1(1− 3n)

}
dy2

+
1

c1
(k1t+ k2)

3n
m+1 exp

{
− c2(k1t+ k2)

1−3n

k1(1− 3n)
dy2

}
dz2. (3.11)

The model (3.11) represents an anisotropic Bianchi type II cosmological universe filled with a bulk
viscous fluid in the framework of Lyra geometry.

4 Results and Discussions
Now using equations (3.4), (3.9) and (3.10) in equation (2.15), we get

β̇

β
=

−3nk1
k1t+ k2

(4.1)

which on integration gives

β =
M

(k1t+ k2)3n
. (4.2)

where M is integration constant. The expressions for effective pressure (p), the proper energy
density(ρ), the string tension (λ) and the particle density (ρp) for the model (3.11) are obtained as,

p = −
[nk2

1(36m
2n− 12m2 − 18m+ 18mn+ 9n− 6)

4(m+ 1)2(k1t+ k2)2
+

3M2 + c22
4(k1t+ k2)6n

+
1

4
(k1t+k2)

6n(m−1)
(m+1)

]
, (4.3)
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Figure 1: The plot of effective pressure p versus cosmic time t
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9n2k2
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Figure 2: The plot of proper density ρ versus cosmic time t

λ =
6nk2

1(2m
2 − 3mn+m+ 3n− 6m2n− 1)

4(m+ 1)2(k1t+ k2)2
− (k1t+ k2)

6n(m−1)
(m+1) , (4.5)
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Figure 3: The plot of string tension λ versus cosmic time t
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Figure 4: The plot of particle energy density ρp versus cosmic time t

For n > 1, the model is accelerating whereas for n < 1 the model is decelerating. Here we have
compared two modes of universe through graphical analysis of various parameters . We have chosen
n = 0.4, i,e q > 0 to describe decelerating phase while the accelerating phase has been accounted
by choosing n = 2.4 i,e q < 0, the other constants are chosen as m = 0.5, c2 = 0.2, M = .009,
k1 = 1.5 and k2 = 0.3. Fig. 1 depicts the variation of effective pressure versus cosmic time in the two
modes of the evolution of the universe. We observe that the pressure is positive in the decelerating
universe which decreases with the evolution of the universe. But in the accelerating phase, negative
pressure dominates the universe, as expected. In both cases, the pressure becomes negligible at late
time. In Fig.2 the proper energy density has been graphed versus time. It is evident that the proper
energy density remains positive in both modes of evolution. However, it decreases sharply with time
in decelerating phase more than accelerating phase. Fig.3 and Fig.4 shows nature of particle energy
density and string tension versus cosmic time t in decelerating and accelerating modes respectively.
It is evident that ρp and λ are positive in both modes of evolution. Both are decreasing function of
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time and for sufficiently large times, ρp and λ tends to zero. Therefore, strings disappear from the
universe at late time which is consistent with present day observation.

In most investigations involving bulk viscosity ξ(t) is assumed to be simple power function of
energy density(Santos et al.[25], Maartens [26], Zimdanl [27], Pawon et. al [28]).

ξ(t) = ξ0ρ
η (4.7)

where ξ0 and η are real constant. For low density η may be equal to unity as used in Murphy [4]
work and corresponds to radiating fluid. Further, 0 ≤ η ≤ 1

2
is a more suitable assumption to obtain

realistic cosmological models near big bang (Belinski, Kalatnikov [29]). Therefore, for simplicity and
to obtain realistic models of physical importance, we adopt the following three cases as η = 0, 1

2
, 1.

From equations (2.5), (2.17), (4.3), (4.4) and (4.7) we get

p = −
[
nk2

1(36m
2n− 12m2 − 18m+ 18mn+ 9n− 6)

4(m+ 1)2(k1t+ k2)2
+

3M2 + c22
4(k1t+ k2)6n

+
1

4
(k1t+ k2)

6n(m−1)
m+1

]
+

3nk1ξ0
(k1t+ k2)

[
9n2k2

1(4m+ 1)

4(m+ 1)2(k1t+ k2)2
+

3M2 − c22
4(k1t+ k2)6n

− 1

4
(k1t+ k2)

6n(m−1)
m+1

]η

. (4.8)
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Figure 5: The plot of isotropic pressure p versus cosmic time t for q > 0

When η = 0, equation (4.7) reduces to ξ = ξ0 =constant. Hence in this case equation (4.8)
becomes

p = −
[nk2

1(36m
2n− 12m2 − 18m+ 18mn+ 9n− 6)

4(m+ 1)2(k1t+ k2)2
+

3M2 + c22
4(k1t+ k2)6n

+
1

4
(k1t+ k2)

6n(m−1)
m+1

]
+

3nk1ξ0
(k1t+ k2)

(4.9)

When η = 1
2
, equation (4.7) reduces to ξ = ξ0ρ

1
2 . Hence in this case, equation (4.8) with use of

equation (4.4) leads to

p = −
[nk2

1(36m
2n− 12m2 − 18m+ 18mn+ 9n− 6)

4(m+ 1)2(k1t+ k2)2
+

3M2 + c22
4(k1t+ k2)6n

+
1

4
(k1t+ k2)

6n(m−1)
m+1

]
+

3ξ0nk1
(k1t+ k2)

[ 9n2k2
1(4m+ 1)

4(m+ 1)2(k1t+ k2)2
+

3M2 − c22
4(k1t+ k2)6n

− 1

4
(k1t+ k2)

6n(m−1)
m+1

] 1
2
. (4.10)

When η = 1, equation (4.7) reduces to ξ = ξ0ρ. Hence in this case, equation (4.8) with use of
equation (4.4), leads to

p = −
[nk2

1(36m
2n− 12m2 − 18m+ 18mn+ 9n− 6)

4(m+ 1)2(k1t+ k2)2
+

3M2 + c22
4(k1t+ k2)6n

+
1

4
(k1t+ k2)

6n(m−1)
m+1

]
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+
3ξ0nk1

(k1t+ k2)

[ 9n2k2
1(4m+ 1)

4(m+ 1)2(k1t+ k2)2
+

3M2 − c22
4(k1t+ k2)6n

− 1

4
(k1t+ k2)

6n(m−1)
m+1

]
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Figure 6: The plot of isotropic pressure p versus cosmic time t for q < 0

Fig.5 shows the positive and decreasing behavior of isotropic pressure for different values of η in
decelerating phase whereas Fig.6 depicts negative and increasing behavior of isotropic pressure in
accelerating mode of universe.
The physical and kinematical parameters of the model (3.11) have following expression:

V = ABC = (k1t+ k2)
3n, (4.12)

θ =
3nk1

k1t+ k2
, (4.13)

σ2 =
1

3

[
36m2n2k2

1 + 18n2k2
1 − 6n2k2

1(m+ 1)2

4(m+ 1)2(k1t+ k2)2
+

2c22
4(k1t+ k2)6n

]
, (4.14)

H =
nk1

(k1t+ k2)
, (4.15)

Am =
(2m− 1)2

2(m+ 1)2
+

1

6

c22
{n2k2

1(k1t+ k2)6n−2} . (4.16)

It is evident that the energy condition ρ ≥ 0 and ρp ≥ 0 are satisfied under the appropriate choice
of constants. The parameters p, ρ, ρp andλ start off with extremely large values, which continue to
decrease with the expansion of the universe provided m < 1. In particular, the large values of ρp and
λ in the beginning suggest that the string dominates the early universe. For sufficiently large times,
the ρp and λ become negligible. Therefore, the strings disappear from the universe for large times.

We observe that the spatial volume V is zero at t = − k2
k1

. At this epoch the energy density, the
pressure and shear expression, Hubble parameter all have infinite values. Therefore the model has
point type singularity at t = − k2

k1
. These physical and kinematical parameters are decreasing function

of time which ultimately tend to zero as t → ∞. The anisotropic parameter increases with time for
n < 1

3
and decrease for n > 1

3
.Thus it depends upon n. Since σ2

θ2
does not tend to zero at t → ∞ this

shows that anisotropy in the model is maintained throughout the expansion. For n > 1 the model is
accelerating in the presence of dark energy which is consistent with present day observation whereas
for 0 < n < 1, DP and pressure are positive so the model is decelerating.
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5 Conclusion
In summary, we have considered the field equations for a viscous fluid together with massive string
within the framework of Lyra geometry for a spatially homogeneous and Bianchi type II space time.
The presence of bulk viscosity is to bring a change in the perfect fluid model. Bulk viscosity is
expected to play an important role in the early evolution of the universe. We have obtained exact
solutions of the field equations by assuming that the space-time admits a constant deceleration
parameter. For n > 1 the corresponding cosmological model represents an accelerated expanding
universe having initial big-bang singularity at t = − k2

k1
and for 0 < n < 1, we have obtained a family of

decelerating models of the universe. It is worthwhile to mention the work of Vishwakarma [30], where
he has shown that the decelerating models are also consistent with recent CMB observations model
by WMAP, as well as the high red-shift supernovae Ia data including 1997 iff at z = 1.755. The role of
viscosity and strings are discussed. It has been found that the displacement vector β has a large value
at the beginning of universe and reduces fast during its evolution so it behaves like cosmological term
Λ in the normal guage treatment and the solutions are consistent with recent observations of (SNe Ia).
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