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Abstract
This paper discusses a design problem of a variable gain robust controller with guaranteed L2 gain
performance for a class of uncertain switched linear systems. The uncertainties included in the
switched linear system under consideration are supposed to satisfy the matching condition and the
proposed variable gain robust controller consists of a switching rule, state feedback laws with fixed
and variable feedback gain matrices. The switching rule and the fixed feedback gain matrices are
derived by using the nominal system. In this paper, we show that a design method of the variable
gain robust controller with guaranteed L2 gain performance are reduced to matrix inequalities.
Besides, it is presented that the number of matrix inequalities in the proposed design is less than
one for the existing results. Finally, an illustrative example is included.
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1 Introduction

Robust control is very important topic in the control engineering community, because unavoidable
discrepancies between mathematical models and systems in practice, referred to as “uncertainties”,
can degrade the performance of control systems. Therefore for dynamical systems with uncertainties
lots of researchers have considered robust control problems such as robust stability analysis, robust
stabilization and so on (e.g.[1, 2] and references therein). In addition, some design methods of
variable gain controllers for uncertain linear systems have also been shown (e.g. [3, 4]). In the
work of Maki and Hagino[3] have presented a robust controller with adaptation mechanism for linear
systems with time-varying parameter uncertainties. Additionally, we have proposed a robust controller
with an adaptive compensation input which achieves not only asymptotical stability but also improving
transient behavior[4]. This robust controller is one of variable gain robust controllers which are tuned
by updating laws and the adaptive compensation input is designed to reduce the effect of unknown
parameters. Besides, input-to-state stability and/or input-to-output performance analysis of dynamical
systems have also been well studied in control system theory, and in particular the linear robust H∞
control and L2 gain performance analysis are well-established research area (e.g. [5, 6, 7, 8]).

On the other hand, analysis and controller design for switched systems have received a growing
attention in control theory and practice (e.g. [9, 10]). Switched systems which are composed of
a family of continuous-time (or discrete-time) subsystems and a switching signal that orchestrates
the switching between them are an important class of hyblid systems. Thus switched systems have
been well studied from a variety of viewpoints. The first viewpoint is that the switching signals are
considered as exogenous variables. The switching signal in this case is not available for controller
design, and then the control problem is to investigate whether there exists a switching signal such
that the switched system can achieve desired control performance (stability, certain disturbance
attenuation level and so on). The second viewpoint, which is of interest in this paper, is that control
engineers can utilize the switching rule to achieve satisfactory control performance, i.e. the switching
signal can be used for control purposes. In the last three decades, available switchings between
subsystems for control purposes have been suggested. In particular, Wicks et al. have established a
theoretical strategy based on Lyapunov stability theory[9]. Furthermore, some robust controllers for
switched linear systems with uncertainties have also been studied (e.g. [10, 11, 12, 13]). However,
these methods have disadvantages such that with the increase of subsystem number of extreme
point number, the computation complexity increases and the possibility of quadratic stabilization
decreased[11, 12]. From this viewpoint, we have proposed a design method of a variable gain robust
controller with adjustable parameters for a class of uncertain switched linear systems, and show that
the number of matrix inequalities needed to be solved is always less than the existing results[14, 15].

In this paper on the basis of our works[4, 14] we consider a design problem of a variable
gain robust controller with guaranteed L2 gain performance for a class of uncertain switched linear
systems. Namely, we extend our previous works[4, 14] to a variable gain robust controller with
guaranteed L2 gain performance. The variable gain robust controller consists of a switching rule,
state feedback laws with constant and variable gain matrices, and uncertainties under consideration
are supposed to satisfy the well-known matching condition[16]. The switching rule among subsystems
and the fixed gain matrices are determined by using the nominal system. In this paper, the variable
gain matrix is also determined in order to compensate the effect of uncertainties. Since the switching
rule is determined by using the nominal system, the number of matrix inequalities needed to be
solved is less than the conventional robust control with L2 gain performance based on the existing
results (e.g [13]) and thus the proposed controller design method is useful. This paper is organized as
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follows. In Section 2, we show the notation used in this paper and the well-known existing results. In
Section 3, we define a class of uncertain switched linear systems under consideration, and introduce
adjustable parameters. Section 4 contains the main results. The design method of the proposed
variable gain robust controller with L2 gain performance can be developed. Finally, a numerical
example is presented to illustrate the results developed in this paper.

2 Preliminaries and Existing Results
In this section, we show notations and the well-known existing results for switched linear systems
which are used in this paper. Note that the notations and the well-known existing results for switched
linear systems which are shown in this section have also been stated in our works[14, 15].

In the sequel, we use the following notation. The transpose of matrix X and the inverse of one
are denoted by X T and X−1 respectively. He{X} means X + X T and diag(X1, · · · ,XM) denotes a
block diagonal matrix composed of matrices Xi for i = 1, · · · ,M. Also, In represents n-dimensional
identity matrix. For real symmetric matrices X and Y, X > Y (resp. X ≥ Y) means that X − Y
is positive (resp. nonnegative) definite matrix. Furthermore, for a vector x ∈ <n, ||x|| denotes
standard Euclidian norm and

∥∥X∥∥ for a matrix X means a matrix norm induced by the vector norm.

The symbols “4=” and “?” mean equality by definition and symmetric blocks or symmetric elements
in matrices, respectively. Besides, L2[0,∞) is L2-space (i.e. the collection of all square integrable
functions) defined on [0,∞) and for a signal f(t) ∈ L2[0,∞), ||f(t)||L2 denotes its L2-norm.

Next we show the well-known existing results for switched linear systems. Consider the following
dynamical system.

d

dt
x(t) = Aσ(x,t)x(t) (2.1)

where x(t) ∈ <n is the vector of the state and σ(x, t) ∈ IS
4
= {1, 2, · · · ,S} is a switching rule.

Therefore, the matrix Aσ(x,t) is allowed to take values only in the set {A1, · · · , AS}. Such a dynamical
system is said to be “switched linear system” (e.g. [11]). In addition for the switched linear system
of (2.1), we show a definition, two theorems for quadratic stabilizability and quadratic stabilization via
switchings (e.g. [9, 10, 12, 13]) and two lemmas[17, 18].
Definition 1. [9, 10, 12] The switched linear system of (2.1) is quadratically stabilizable via state
feedback switching if there exists a positive definite function V(x, t)

4
=xT (t)Px(t), a positive number

ε and a switching rule σ(x, t) such that

d

dt
V(x, t) < −εxT (t)x(t) (2.2)

for all trajectories x(t) of the switched linear system of (2.1).
Theorem 1. [10, 12, 13] The switched linear system of (2.1) is quadratically stabilizable via state
feedback switching if there exists constant scalars τk ≥ 0 (k = 1, · · · ,S) with

∑S
k=1 τk = 1 such that

the matrix
∑S
k=1 τkAk is asymptotically stable, i.e. there exist a positive scalar ε and a symmetric

positive definite matrix P ∈ <n×n which satisfy

He


(
S∑
k=1

τkAk

)T
P

 =

(
S∑
k=1

τkAk

)T
P + P

(
S∑
k=1

τkAk

)
< −εIn. (2.3)

If the switched linear system of (2.1) is quadratically stabilizable, then the switching rule is given by

σ(x, t)
4
= argmin

1≤k≤S

{
xT (t)

(
ATkP + PAk

)
x(t)

}
. (2.4)
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Theorem 2. [10] Assume S = 2. The switched linear system of (2.1) is quadratically stabilizable
via state feedback switching if and only if there exists nonnegative constants τ1 and τ2 satisfying
τ1 + τ2 = 1 such that τ1A1 + τ2A2 is asymptotically stable, i.e. there exits the symmetric positive
definite matrix P satisfying the inequality of (2.3).

If the switched linear system of (2.1) is quadratically stabilizable, then the switching rule is given
by (2.4).

Lemma 1. For arbitrary vectors λ and ξ and matrices Λ and Ξ which have appropriate dimensions,
the following relation holds.

He
{
λTΛT∆(t)Ξξ

}
≤ 2

∥∥Λλ∥∥ ∥∥∆(t)
∥∥ ∥∥Ξξ∥∥

≤ 2
∥∥Λλ∥∥ ∥∥ΞT ξ∥∥ (2.5)

where the time-varying matrix ∆(t) with an appropriate dimension satisfies the relation
∥∥∆(t)

∥∥ ≤ 1.0.

Lemma 2. (Schur complement) For a given constant real symmetric matrix Ξ, the following items
are equivalent.

(i). Ξ =

(
Ξ11 Ξ12

ΞT12 Ξ22

)
> 0

(ii). Ξ11 > 0 and Ξ22 − ΞT12Ξ−1
11 Ξ12 > 0

(iii). Ξ22 > 0 and Ξ11 − Ξ12Ξ
−1
22 Ξ

T
12 > 0.

3 Problem Formulation
Consider the following uncertain switched linear system.

d

dt
x(t) = Aσ(x,t) (∆, t)x(t) +Bσ(x,t)u(t) + Υ1ω(t)

z(t) = Cx(t) + Υ2ω(t)
(3.1)

where x(t) ∈ <n, u(t) ∈ <m, z(t) ∈ <l and ω(t) ∈ <r are the vectors of the state (assumed
to be available for feedback), the control input, the controlled output and the disturbance input,
respectively. The disturbance input ω(t) is assumed to be square integrable, i.e. w(t) ∈ L2[0,∞),
and C and Υk (k = 1, 2) in (3.1) denote the known constant matrices with appropriate dimensions

respectively. Furthermore, σ(x, t) ∈ IS
4
= {1, 2, · · · ,S} is a switching rule to be designed and the

matrix Aσ(x,t)(∆, t) is supposed to have an appropriate dimension and the following time-varying
structure.

Aσ(x,t) (∆, t) = Aσ(x,t) +Bσ(x,t)Dσ(x,t)∆σ(x,t)(t)Eσ(x,t). (3.2)

The structure of the time-varying parameter which is shown in (3.2) is called “the uncertainties
satisfying matching condition”. Note that the assumption that the matching condition holds is not
uncommon and adopted in many literatures (e.g. [16, 19] and references therein). In (3.2), Aσ(x,t)
and Bσ(x,t) denote the nominal values for the system parameters, and the matrices Dσ(x,t) ∈ <m×p
and Eσ(x,t) ∈ <q×n represent the structure of the uncertainties for the system matrix. The time-
varying parameter ∆σ(x,t)(t) represents unknown parameters with an appropriate dimension and
satisfies the relation

∥∥∆σ(x,t)(t)
∥∥ ≤ 1.0.

The nominal system, ignoring the unknown parameter ∆σ(x,t)(t) ∈ <p×q in (3.1), is given by

d

dt
x(t) = Aσ(x,t)x(t) +Bσ(x,t)u(t) + Υ1ω(t)

z(t) = Cx(t) + Υ2ω(t)
(3.3)
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where x(t) ∈ <n, u(t) ∈ <m and z(t) ∈ <l are the vectors of the state, the control input and the
controlled output for the nominal system respectively.

Now we consider the state feedback law for the nominal system expressed as

u(t)
4
=Kσ(x,t)x(t) (3.4)

where Kk (k = 1, · · · ,S) is the fixed feedback gain matrix for the k-th subsystem and decision
methods of the feedback gain matrix Kk ∈ <m×n (k = 1, · · · ,S) and the switching rule σ(x, t) will be
stated in Section 4.

From (3.3) and (3.4), we have the following closed-loop system for the nominal system.

d

dt
x(t) = AKσ(x,t)x(t) + Υ1ω(t)

zwz(t) = Cx(t) + Υ2ω(t).
(3.5)

In (3.5), AKσ(x,t) is the matrix given by

AKσ(x,t) = Aσ(x,t) +Bσ(x,t)Kσ(x,t). (3.6)

For the uncertain switched linear system of (3.1), by using the fixed gain matricesKk we consider
the following control law.

u(t)
4
=Kσ(x,t)x(t) + ξσ(x,t)(L, x, t) (3.7)

where ξσ(x,t)(x,L, t) ∈ <m is a compensation input[4] to correct the effect of uncertainties, and it is
supposed to have the following structure.

ξσ(x,t)(L, x, t)
4
=Lσ(x,t)(x, t)x(t) (3.8)

where Lσ(x,t)(x, t) ∈ <m×n is a variable gain matrix. Thus from (3.1), (3.2), (3.7) and (3.8), the
closed-loop system for the uncertain switched linear system of (3.1) can be written as

d

dt
x(t) =

(
AKσ(x,t) +Bσ(x,t)Dσ(x,t)∆σ(x,t)(t)Eσ(x,t)

)
x(t) +Bσ(x,t)Lσ(x,t)(x, t)x(t) + Υ1ω(t)

z(t) = Cx(t) + Υ2ω(t).

(3.9)

In (3.9), AKσ(x,t) is a matrix given by AKσ(x,t) = Aσ(x,t) +Bσ(x,t)Kσ(x,t).
Now on the basis of the existing results (e.g. [7, 8]) we shall give the definition of the variable gain

robust control with guaranteed L2 gain performance γ∗ > 0 for the uncertain switched linear system
of (3.1) and the control input of (3.7).

Definition 2. For the uncertain switched linear system of (3.1), the control input of (3.7) is said to be
a variable gain robust control with guaranteed L2 gain performance level γ∗ > 0 if the closed-loop
system of (3.9) is robustly stable (internally stable) and H∞-norm of the closed-loop system transfer
function from the disturbance input w(t) to the controlled output z(t) is less than or equal to a positive
constant γ∗ .

Now by introducing a symmetric positive definite matrix P ∈ <n×n, we consider a quadratic
function V(x, t) = xT (t)Px(t). Besides, we define the Halmiltonian defined as

H(x, ω, t)
4
=

d

dt
V(x, t) + zT (t)z(t)− (γ∗)2wT (t)w(t). (3.10)

Then we have the following lemma for a variable gain robust control with guaranteedL2 gain performance
γ∗.

†The positive constant γ∗ is said to disturbance attenuation level.
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Lemma 3. Consider the uncertain switched linear system of (3.1) and the control input of (3.7).
For the quadratic function V(x, t) = xT (t)Px(t) and the signals z(t) and ω(t), if there exist the

symmetric positive definite matrix P ∈ <n×n and a positive scalar γ∗ which satisfy

H(x, ω, t) < 0 (3.11)

then the control input of (3.7) is a variable gain robust control with guaranteed L2 gain performance
γ∗ > 0†.

Proof. By integrating both sides of the inequality of (3.11) from 0 to∞ with x(0) = 0, we easily see
from V(x, 0) = 0 that the following inequality holds.∫ ∞

0

zT (t)z(t)dt− (γ∗)2
∫ ∞
0

wT (t)w(t)dt+ V(x,∞) < 0. (3.12)

We see from the inequality of (3.12) that the closed-loop system of (3.9) is robustly stable (internally
stable)‡ and that theH∞-norm of the closed-loop system transfer function from the disturbance input
w(t) ∈ <q to the controlled output z(t) ∈ <p is less than or equal to a given positive constant γ∗,
because the inequality of (3.12) means the following relation.

||z(t)||L2 < γ∗||w(t)||L2 (3.13)

Thus the proof of Lemma 3 is completed.

Therefore, our control objective is to design the variable gain robust controller with guaranteed L2

gain performance γ∗ for the uncertain switched linear system of (3.1). That is to derive the symmetric
positive definite matrix P ∈ <n×n, a positive scalar γ∗, the feedback gain matricesKk (k = 1, · · · ,S),
the switching rule σ(x, t) and the variable gain matrix Lσ(x,t)(x, t) ∈ <m×l which satisfy the inequality
condition of (3.11) for all admissible uncertainties ∆σ(x,t)(t) ∈ <p×q and the disturbance input ω(t) ∈
L2[0,∞). Next section, a design method of the feedback gain matrices Kk (k = 1, · · · ,S), the
switching rule σ(x, t), and the variable gain matrix Lσ(x,t)(x, t) ∈ <m×l is derived.

4 The Variable Gain Robust Controllers

In this section firstly, we show a design method of the switching rule σ(x, t) ∈ <1 and the feedback
gain matrices Kk (k = 1, · · · ,S) ∈ <m×n and next, the variable gain matrix Lσ(x,t)(x, t) ∈ <m×n
is derived. The switching rule σ(x, t) and the feedback gain matrices Kk are determined by using
the nominal closed-loop system of (3.5), and the variable gain matrix Lσ(x,t)(x, t) ∈ <m×n is derived
such that the effect of uncertainties is reduced.

Firstly using the nominal closed-loop system of (3.5), we show the following lemma for the
switching rule σ(x, t) and the feedback gain matrices Kk (k = 1, · · · ,S).

Lemma 4. Consider the switched linear system of (3.3) with the control input of (3.4).
The switched linear system of (3.5) is robustly stable (internally stable) with guaranteed L2 gain

performance γ∗ > 0 if there exist constant scalars τ1 ≥ 0, · · · , τS ≥ 0 with
∑S
k=1 τk > 0 (if S = 2

‡ Note that if the condition of (3.11) is satisfied, then we see from the relation ω(t) ≡ 0, the
Definition 1 and Theorem 1 that the quadratic function V(x, t) becomes a Lyapunov function for
the closed-loop system of (3.9). Namely, quadratic stability (internal stability) is guaranteed for the
closed-loop system of (3.9).
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then τ1 + τ2 = 1), a symmetric positive definite matrix X 4=P−1 ∈ <n×n, the matrixWk ∈ <m×n (k =
1, · · · ,S) and a positive scalar γ which satisfy the inequality condition

He

{(
S∑
k=1

τkAk

)
X +

S∑
k=1

τkBkWk

}
Υ1 + XCTΥ2 XCT

? ΥT2 Υ2 − γIp 0

? ? −Il

 < 0. (4.1)

then the switched linear system of (3.5) is robustly stable via the control input of (3.7) with the
feedback gain matrices Kk (k = 1, · · · ,S) given by

Kk =WkX−1 (4.2)

and the switching rule which is taken as

σ(x, t)
4
= argmin

1≤k≤S

{
xT (t)

(
ATKkP + PAKk

)
x(t)

}
. (4.3)

Besides, the disturbance attenuation level γ∗ > 0 is given by γ∗ =
√
γ.

Proof. Now, we consider the inequality condition of (3.11) for the switched linear system of (3.5), i.e.
H(x, ω, t) < 0. Then the result of Lemma 4 is straightforward from Theorem 1, Proof of Lemma 4
and the existing results (e.g. [12, 13, 14]).

Next, we state and prove the following theorem that is main results in this paper for the proposed
control with guaranteed L2 gain performance.

Theorem 3. Consider the uncertain switched linear system of (3.1) and the control input of (3.7).
For the uncertain switched linear system of (3.1) with the control input of (3.7) if there exist the

symmetric positive definite matrix X ∈ <n×n and the matrices Wk (k = 1, · · · ,S) which satisfy the

matrix inequality condition of (4.1), then using the symmetric positive definite matrix P 4=X−1, we
consider the following variable gain matrix Lσ(x,t)(x, t) ∈ <m×n.

Lσ(x,t)(x, t) =

 −
∥∥DTσ(x,t)BTσ(x,t)Px(t)

∥∥ ∥∥Eσ(x,t)x(t)
∥∥∥∥BTσ(x,t)Px(t)

∥∥2 BTσ(x,t)P if BTσ(x,t)Px(t) 6= 0

Lσ(x,tζ)(x, tζ) if BTσ(x,t)Px(t) = 0

(4.4)

where tζ = limζ>0,ζ→0(t − ζ)[3]. Furthermore using the matrices X ∈ <n×n andWk ∈ <m×n (k =
1, · · · ,S) which satisfy the matrix inequality condition of (4.1), the feedback gain matrices Kk (k =
1, · · · ,S) ∈ <m×n are derived as (4.2). Additionally, the switching rule σ(x, t) in the uncertain closed-
loop system of (3.9) is given by

σ(x, t)
4
= argmin

1≤k≤S

{
xT (t)

(
ATKkP + PAKk

)
x(t)

}
. (4.5)

Then the control input of (3.7) is a variable gain robust control with guaranteed L2 gain performance
γ∗ > 0.

Proof. Using the symmetric positive definite matrix P = X−1 where X is the symmetric positive
definite matrix satisfying the matrix inequality of (4.1), we consider the condition of (3.11). The time
derivative of the quadratic function V(x) = xT (t)Px(t) along the trajectory of the uncertain closed-
loop system of (3.9) can be written as

d

dt
V(x) = xT (t)

[
He
{
PAKσ(x,t)

}]
x(t) + 2xT (t)PBσ(x,t)Dσ(x,t)∆σ(x,t)(t)Eσ(x,t)x(t)

+ 2xT (t)PBσ(x,t)Lσ(x,t)(x, t)x(t) + 2xT (t)PΥ1ω(t). (4.6)
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Thus we see from the definition of Hamiltonian H(x, ω, t) that the following relation is satisfied.

H(x, ω, t) =

(
x(t)
w(t)

)(
He
{
PAKσ(x,t)

}
+ CTC PΥ1 + CTΥ2

? ΥT2 Υ2 − (γ∗)2 Ir

)(
x(t)
w(t)

)
+ 2xT (t)PBσ(x,t)Dσ(x,t)∆σ(x,t)(t)Eσ(x,t)x(t) + 2xT (t)PBσ(x,t)Lσ(x,t)(x, t)x(t). (4.7)

Applying Lemma 1 to the second term of the right hand side in (4.7) we obtain

H(x, ω, t) ≤
(

x(t)
w(t)

)(
He
{
PAKσ(x,t)

}
+ CTC PΥ1 + CTΥ2

? ΥT2 Υ2 − (γ∗)2 Ir

)(
x(t)
w(t)

)
+ 2

∥∥DT
σ(x,t)B

T
σ(x,t)Px(t)

∥∥ ∥∥Eσ(x,t)x(t)
∥∥+ 2xT (t)PBσ(x,t)Lσ(x,t)(x, t)x(t). (4.8)

Besides from the existing works of Wicks et al.[9] and Oya and Hagino[15], combining the condition
of (2.3) and the switching rule σ(x, t) expressed as (4.5), we obtain the following inequality for internal
stability (quadratic stablity).

S∑
k=1

τkx
T (t)

(
ATKσ(x,t)P + PAKσ(x,t)

)
x(t) ≤ xT (t)


(
S∑
k=1

τkAKk

)T
P + P

(
S∑
k=1

τkAKk

)x(t).

(4.9)

Therefore, one can easily see from the inequalities of (4.8), the condition of (4.9) and the relation
γ = (γ∗)2 that the following relation holds.

H(x, ω, t) ≤

(
x(t)

w(t)

) He


(
S∑
k=1

τkAKk

)T
P

+ CTC PΥ1 + CTΥ2

ΥT1 P + ΥT2 C ΥT2 Υ2 − γIr

( x(t)
w(t)

)

+ 2
∥∥DT

σ(x,t)B
T
σ(x,t)Px(t)

∥∥ ∥∥Eσ(x,t)x(t)
∥∥+ 2xT (t)PBσ(x,t)Lσ(x,t)(x, t)x(t). (4.10)

Now we consider the case of BTσ(x,t)Px(t) 6= 0. From the variable gain matrix of (4.4), we have

H(x, ω, t) ≤

(
x(t)

w(t)

) He


(
S∑
k=1

τkAKk

)T
P

+ CTC PΥ1 + CTΥ2

? ΥT2 Υ2 − γIr

( x(t)
w(t)

)
(4.11)

and thus we consider the following condition instead of (3.11). He


(
S∑
k=1

τkAKk

)T
P

+ CTC PΥ1 + CTΥ2

? ΥT2 Υ2 − γIr

 < 0. (4.12)

By introducing a complementary variableWk = KkX and pre- and post-multiplying (4.12) by diag(X , Ir),
we have  He

{(
S∑
k=1

τkAk

)
X +

S∑
k=1

τkBkWk

}
+ XCTCX Υ1 + XCTΥ2

? ΥT2 Υ2 − γIr

 < 0. (4.13)
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Note that the left hand side of the matrix inequality of (4.13) can be rewritten as He

{(
S∑
k=1

τkAk

)
X +

S∑
k=1

τkBkWk

}
+ XCTCX Υ1 + XCTΥ2

? ΥT2 Υ2 − γIr



=

 He

{(
S∑
k=1

τkAk

)
X +

S∑
k=1

τkBkWk

}
Υ1 + XCTΥ2

? ΥT2 Υ2 − γIr

− ( XCT
0

)
(−Il)

(
CX 0

)
.

(4.14)

Thus applying Lemma 2 (Schur complement) to (4.13), we find that the inequality of (4.13) is equivalent
to the LMI 

He

{(
S∑
k=1

τkAk

)
X +

S∑
k=1

τkBkWk

}
Υ1 + XCTΥ2 XCT

? ΥT2 Υ2 − γIp 0

? ? −Il

 < 0 (4.15)

and one can easily see that if the matrix inequality of (4.1) holds then the condition of (3.11) is also
satisfied.

Next, we consider the case of BTσ(x,t)Px(t) = 0. In this case, we easily see from (4.7) that
the Hamiltonian H(x, ω, t) satisfies the relation of (3.11), provided that if there exists the symmetric
positive definite matrix X ∈ <n×n and positive scalars τk which satisfy the inequality of (4.1). In
this case, we assume that the variable gain matrix Lσ(x,t)(x, t) ∈ <m×n is defined as Lσ(x,t)(x, t) =
Lσ(x,t)(x, tζ) where tζ = limζ>0,ζ→0(t− ζ)[3] .

Obviously from the above discussion, the control input of (3.7) with the feedback gain matrices
Kk ∈ Rm×n of (4.2), the switching rule σ(x, t) of (4.3) and the variable gain matrix Lσ(x,t)(x, t) of
(4.4) is a variable gain robust control with guaranteed L2 gain performance γ∗ > 0. Therefore the
proof of Theorem 3 is accomplished.

Remark 1. If the positive scalars τk (k = 1, · · · ,S) are fixed, then the matrix inequality condition
of (4.1) becomes a linear matrix inequality (LMI) in X , Wk and γ and thus the LMI of (4.1) defines a
convex solutionset of (X ,Wk, γ). Thus various efficient convex optimization algolithms can be utilized
to test whether the LMI is solvable and to generate particular solutions. Namely, we can derive the
variable gain robust controller minimizing the disturbance attenuation level γ∗ (see Appendix A.1 for
details).

Remark 2. In this paper, the fixed gain matrices Kk (k = 1, · · · ,S) are determined by using the
nominal system. The problem needed to solved in the proposed design is to find constant scalars
τk ≥ 0 (k = 1, · · · ,S) with

∑S
k=1 τk > 0, a positive scalar γ∗, a symmetric positive definite matrix

X ∈ <n×n and matrices Wk ∈ <m×n (k = 1, · · · ,S). If for the uncertain switched linear system of
(3.1), the number of subsystems is S = M, then the number of the inequalities needed to solved in
the proposed control design is “1” and that in the existing results is “2M” (see [15]). Namely, there
are always less matrix inequalities needed to be solved in proposed design method than that in the
existing result (see [11, 12, 13]). In other word, the proposed variable gain robust controller is less
conservative. Thus the proposed approach is useful.

Remark 3. The uncertainties in the switched linear system of (3.1) are included in the state matrix
only. The proposed design method can also be applied to the case that the parameter uncertainty is
contained in both the system matrix and the input matrix. By introducing additional actuator dynamics
and constituting an augmented system, uncertainties in the input matrix are embedded in the system
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matrix of the augmented system[19]. Therefore the same design procedure can be applied. Besides
although the uncertainty in the controlled system under consideration is defined as norm-bounded
uncertainties and satisfies the matching condition, we can easily extend the result in this paper to
some uncertain switched linear systems such as switched linear systems with structured uncertainties
or mismatched one (see [15]).

5 Illustrative Examples

In order to demonstrate the efficiency of the proposed robust controller, we have run a simple
example. The control problem considered here are not necessary practical. However, the simulation
results stated below illustrate the distinct feature of the proposed variable gain robust controller with
guaranteed L2 gain performance.

Consider the three-dimesional uncertain switched linear system with the following coefficient
matrices.

A1 =

 −1.0 1.0 −1.5
0.0 1.0× 10−1 0.0
−1.0 −2.5 5.0× 10−1

 , B1 =

 3.0
0.0
1.0


A2 =

 1.0× 10−1 0.0 0.0
−0.5 −1.0 −1.5

8.0× 10−1 1.0 −2.0

 , B2 =

 0.0
2.0
1.0


C =

(
1.0 1.0 0.0

)
, Υ1 =

(
1.0 0.0 1.0

)T
, Υ2 = 1.0

D1 =
(

3.0 5.0× 10−1
)
, E1 =

(
0.0 1.0 0.0
0.0 1.0 1.0

)
,

D2 =
(

0.0 −5.0
)
, E2 =

(
1.0 1.0 1.0
1.0 0.0 0.0

)
.

(5.1)

Namely σ(x, t) ∈ I2
4
= {1, 2}, i.e. S = 2. Note that each nominal subsystem for the uncertain switched

linear system with coefficient matrices of (5.1) is not controllable.
Now by selecting the parameters τ1 and τ2 such as τ1 = τ2 = 0.5 (see Theorem 2) and applying

Theorem 3, i.e. solving the matrix inequality of (4.1), we obtain

X =

 3.10989× 101 −6.44230 3.39236
? 2.07461× 101 1.11133× 101

? ? 3.51995× 101

 ,

W1 =
(
−2.74944× 104 0.0 −9.16700× 103

)
,

W2 =
(

1.27972 −4.67610 −1.91051
)
× 104,

γ = 8.09887× 10−1.

(5.2)

and then the feed back gain matrices K1 ∈ <1×3 and K2 ∈ <1×3 can be derived as

K1 =
(
−9.21870× 102 −2.33861× 102 − 9.78344× 101

)
K2 =

(
−1.13259× 102 −2.41220× 103 2.29738× 102

)
.

(5.3)

Besides from the definition of γ, the guaranteed L2 gain performance γ∗ > 0 for the uncertain
switched linear system with coefficient matrices of (5.1) is given by

γ∗
4
=
√
γ = 8.09887× 10−1. (5.4)

Thus, the proposed variable gain robust controller with guaranteed L2 gain performance can be
obtained by solving a matrix inequality of (4.1) only and the variable gain matrix for BTσ(x,t)Px(t) 6= 0
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can be expressed as

Lσ(x,t)(x, t) =



−
∥∥DTσ(x,t)BTσ(x,t)Px(t)

∥∥∥∥Eσ(x,t)x(t)
∥∥∥∥( 1.00592× 101 2.55297× 102 1.06545× 102

)
x(t)

∥∥2BTσ(x,t)P
if σ(x, t) = 1

−
∥∥DTσ(x,t)BTσ(x,t)Px(t)

∥∥ ∥∥Eσ(x,t)x(t)
∥∥∥∥( 2.31937× 102 1.07820× 101 −7.86726× 103

)
x(t)

∥∥2BTσ(x,t)P
if σ(x, t) = 2

.

(5.5)

where DTσ (x, t)BTσ (x, t)Px(t) and Eσ(x,t)x(t) for the switched signal σ(x, t) can be computed as

• σ(x, t) = 1

DT1 BT1 Px(t) =

(
3.01778× 101 7.65892× 102 3.19635× 102

5.02961× 102 1.27647× 102 5.32725× 103

)
x(t),

E1x(t) =

(
0.0 1.0 0.0
0.0 1.0 1.0

)
x(t)

• σ(x, t) = 2

DT2 BT2 Px(t) =

(
0.0 0.0 0.0

−1.15969× 101 −5.39101× 101 3.93363× 102

)
x(t),

E2x(t) =

(
1.0 1.0 1.0
1.0 0.0 0.0

)
x(t).

(5.6)

On the other hand for the fixed gain state feedback control with L2 gain performance, the LMIs of
(A.7) are not feasible. Therefore, we see that the fixed gain robust control with L2 gain performance
for the uncertain switched linear systems with coefficient matrices of (5.1) can not be derived.

From the above, the effectiveness of the proposed design method has been presented.

6 Conclusions
In this paper, a design method of a variable gain robust controller with guaranteedL2 gain performance
for a class of uncertain switched linear systems has been suggested, and a numerical example has
presented to demonstrate the effectiveness of the proposed variable gain robust controller.

The proposed design scheme of the variable gain robust controller consists of designing the
switching rule and the feedback gain matrices which are determined by using the nominal system and
deriving the variable gain matrix in order to reduce the effect of uncertainties. In this paper, we have
shown that the proposed variable gain robust controller with guaranteed L2 gain performance can be
obtained by solving a matrix inequality condition which is same one for the nominal system. Therefore
since the number of matrix inequalities needed to be solved is always less than the conventional fixed
gain robust control based on the existing results (e.g. [11, 12, 13]), the proposed controller design
approach is very useful. Furthermore, one can easily see that the result in this paper is an extension
of the existing results such as [14], [15] and so on. Namely, the proposed design method can also be
extended to switched linear systems with general structured/norm-bounded uncertainties.

The future research subjects are extensions of the proposed variable gain robust controller to
such a broad class of systems as time-delay systems, output feedback control system and so on.
Besides, we will also tackle the design problem of the variable gain robust controller for discrete-time
switched systems and finite-time stabilization (e.g. [20]).
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Appendix
In this Appendix, we discuss optimal L2 gain performance for the proposed variable gain robust

controller and we show a design method of a fixed gain robust control with guaranteed L2 gain
performance. The problem for optimal L2 gain performance can be reduced to convex constrained
optimization problem and the fixed gain robust control with guaranteed L2 gain performance can be
obtained by solving LMIs.

A.1 Optimal L2 gain performance
In this section, we consider the design problem of the proposed robust controller which minimizes
the disturbance attenuation level γ∗. Since the matrix inequality of (4.1) is an LMI provided that the
positive constants τk (k = 1, · · · ,S) are fixed by designers, the problem of designing the proposed
variable gain robust controller which minimizes the disturbance attenuation level γ∗ is reduced to the
following constrained optimization problem.

Minimize
X ,Wk,γ

[γ] subject to X > 0, γ > 0 and (4.1). (A.1)

If the solution X opt > 0, W opt
k and γopt > 0 of the constrained optimization problem of (A.1) is

obtained, then the fixed feedback gain matrices Kk can be computed as (4.2) and the optimal value
γ? for the disturbance attenuation level γ∗ is given by γ? =

√
γopt. Note that, the constrained

optimization problem of (4.15) can be solved by software such as MATLAB’s LMI Control Toolbox,
Scilab’s LMITOOL and so on.

Consequently, the following theorem for designing the proposed variable gain robust controller
with optimal disturbance attenuation level γopt can be developed.
Theorem A.1. Consider the uncertain switched linear system of (3.1) and the control input of (3.7).

If there exist the solution X opt > 0, W opt
k and γopt > 0 of the constrained optimization problem

of (A.1), then using the positive definite matrix Popt 4=
(
X opt)−1, we consider the following variable

gain matrix Lσ(x,t)(x, t) ∈ <m×n.

Lσ(x,t)(x, t) =

 −
∥∥DTσ (x, t)BTσ (x, t)Poptx(t)

∥∥∥∥Eσ(x,t)x(t)
∥∥∥∥BTσ(x,t)Poptx(t)

∥∥2 BTσ(x,t)Popt if BTσ(x,t)Poptx(t) 6= 0

Lσ(x,tζ)(x, tζ) if BTσ(x,t)Poptx(t) = 0

(A.2)

where tζ = limζ>0,ζ→0(t−ζ)[3]. Furthermore the feedback gain matrices Kk (k = 1, · · · ,S) ∈ <m×n
are derived as

Kk =
(
Wopt
k

)
·
(
X opt)−1 (A.3)

Additionally, the switching rule σ(x, t) in the uncertain closed-loop system of (3.9) is given by

σ(x, t)
4
= argmin

1≤k≤S

{
xT (t)

(
ATKkP

opt + PoptAKk

)
x(t)

}
. (A.4)

Then the control input of (3.7) is a variable gain robust control with guaranteed L2 gain performance
γ? =

√
γopt.

A.2 L2 gain performance via a fixed gain state feedback
control

This section shows the result for a fixed gain state feedback control with guaranteedL2 gain performance.
Namely for the uncertain switched linear system of (3.1) we consider the following state feedback
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control with fixed gain matrices Fσ(x,t).

u(t)
4
=Fσ(x,t)x(t). (A.5)

Thus one can see that the closed-loop system can be written as

d

dt
x(t) =

(
AFσ(x,t) +Bσ(x,t)Dσ(x,t)∆σ(x,t)(t)Eσ(x,t)

)
x(t) + Υ1ω(t)

zwz(t) = Cx(t) + Υ2ω(t)
(A.6)

where AFσ(x,t) is a matrix given by AFσ(x,t) = Aσ(x,t) + Bσ(x,t)Fσ(x,t). Then following theorem
gives an LMI-based condition for the existance of a fixed gain state feedback control of (A.5) with
guaranteed L2 gain performance.

Theorem A.2. Consider the uncertain switched linear system of (3.1) and the control input of (A.5).
For l = 1, · · · ,S if there exists symmetric positive definite matrix Y, matrices Zk (k = 1, · · · ,S)

and positive constants δ for LMIs
He

{(
S∑
k=1

τkAk

)
Y +

S∑
k=1

τkBkZk

}
+ δBlDlDTl BTl Υ1 + YCTΥ2 ZCT ZETl

? ΥT2 Υ2 − γIp 0 0

? ? −Il 0

? ? ? −δIq

 < 0.

(A.7)

the switched linear system of (A.6) is robustly stable via the control input of (A.5) with the feedback
gain matrices Fk (k = 1, · · · ,S) given by

Fk = ZkY−1. (A.8)

Besides the switching rule σ(x, t) is given by

σ(x, t)
4
= argmin

1≤k≤S

{
xT (t)

(
ATKkY

−1 + Y−1AKk

)
x(t)

}
. (A.9)

Then the ucnertain closed-loop system of (A.6) is robustly stable (internally stable) with guaranteed
L2 gain performance γ∗ =

√
γ > 0.

Proof. One can see that the result of Theorem A.2 can easily be proved as using the same procedure
of the proof of Lemma 4.
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